A New Continuous-Time Equality-Constrained Optimization Method to Avoid Singularity

نویسندگان

  • Quan Quan
  • Kai-Yuan Cai
چکیده

In equality-constrained optimization, a standard regularity assumption is often associated with feasible point methods, namely the gradients of constraints are linearly independent. In practice, the regularity assumption may be violated. To avoid such a singularity, we propose a new projection matrix, based on which a feasible point method for the continuous-time, equality-constrained optimization problem is developed. First, the equality constraint is transformed into a continuous-time dynamical system with solutions that always satisfy the equality constraint. Then, the singularity is explained in detail and a new projection matrix is proposed to avoid singularity. An update (or say a controller) is subsequently designed to decrease the objective function along the solutions of the transformed system. The invariance principle is applied to analyze the behavior of the solution. We also propose a modified approach for addressing cases in which solutions do not satisfy the equality constraint. Finally, the proposed optimization approaches are applied to two examples to demonstrate its effectiveness. Index Terms Optimization, equality constraints, continuous-time dynamical systems, singularity

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VOLUME MINIMIZATION WITH DISPLACEMENT CONSTRAINTS IN TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURES

In this paper, a displacement-constrained volume-minimizing topology optimization model is present for two-dimensional continuum problems. The new model is a generalization of the displacement-constrained volume-minimizing model developed by Yi and Sui [1] in which the displacement is constrained in the loading point. In the original model the displacement constraint was formulated as an equali...

متن کامل

Constrained Multi-Objective Optimization Problems in Mechanical Engineering Design Using Bees Algorithm

Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using classical optimization methods, this paper presents a Multi-Objective Bees Algorithm (MOBA) for solving the multi-objective optimal of mechanical engineering problems design. In the pre...

متن کامل

An Exact Penalty Function Method for Continuous Inequality Constrained Optimal Control Problem

In this paper, we consider a class of optimal control problems subject to equality terminal state constraints and continuous state and control inequality constraints. By using the control parametrization technique and a time scaling transformation, the constrained optimal control problem is approximated by a sequence of optimal parameter selection problems with equality terminal state constrain...

متن کامل

ISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES CONSIDERING WEIGHT MINIMIZATION AND LOCAL STRESS CONSTRAINTS

The Isogeometric Analysis (IA) is utilized for structural topology optimization  considering minimization of weight and local stress constraints. For this purpose, material density of the structure  is  assumed  as  a  continuous  function  throughout  the  design  domain  and approximated using the Non-Uniform Rational B-Spline (NURBS) basis functions. Control points of the density surface are...

متن کامل

Sequential equality-constrained optimization for nonlinear programming

A new method is proposed for solving optimization problems with equality constraints and bounds on the variables. In the spirit of Sequential Quadratic Programming and Sequential Linearly-Constrained Programming, the new method approximately solves, at each iteration, an equality-constrained optimization problem. The bound constraints are handled in outer iterations by means of an Augmented Lag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012